
Optimization of two Jacobi Smoother Kernels
by Domain-Specific Program Transformation

Stefan Kronawitter
University of Passau

Innstraße 33
94032 Passau, Germany

stefan.kronawitter@uni-passau.de

Christian Lengauer
University of Passau

Innstraße 33
94032 Passau, Germany

christian.lengauer@uni-passau.de

ABSTRACT
Our aim is to apply program transformations to stencil codes,
in order to yield highest possible performance. We observe
memory bandwidth as a major limitation in stencil code
performance. We conducted a small study in which we ap-
plied optimizing transformations to two Jacobi smoother
kernels: one 3D 1st-grade 7-point stencil and one 3D 3rd-
grade 19-point stencil. To obtain highest performance, the
optimizations have to be customized for the execution plat-
form at hand. We illustrate this by experiments on two x86
architectures and one BlueGene/Q architecture. A compiler
with specific knowledge about stencil codes and execution
platforms should be able to apply our transformations auto-
matically. We are working towards such a compiler in the
DFG-funded project ExaStencils.

1. INTRODUCTION
Multigrid methods [6] are widely used in scientific applica-

tions, especially in physics or chemistry simulations. Much
of the time consumed by a multigrid algorithm is due to
the smoother used by it. We study two concrete Jacobi
smoothers [2]: one for a 3D 1st-grade 7-point smoother and
one for a 3D 3rd-grade 19-point smoother. Both smoothers
refer to a single output and two input grids. The three grids
are located in distinct memory areas.

In the 3D 1st-grade smoother kernel, the update of a single
element requires the old input value along with the nearest
neighbours in each direction, and a single corresponding point
of the second input array. Figure 1 depicts the 2D footprint
of this stencil. The source code of the corresponding kernel
appears in Figure 3.

In the 3D 3rd-grade 19-point smoother kernel, the update
of a single element requires not only the nearest neighbours
but all elements in a range of three points in each direction.
Figure 2 depicts the 2D footprint of this stencil. The source
code of the corresponding 3D kernel appears in Figure 4.

The direct implementations of the codes in Figures 3–4
have very poor performance. Suitable optimizations can

HiStencils 2014
First International Workshop on High-Performance Stencil Computations
January 21, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://www.exastencils.org/histencils/2014/

Figure 1: Footprint of a 2D 1st-grade stencil.

Figure 2: Footprint of a 2D 3rd-grade stencil.

improve the performance considerably, yet, they are not ap-
plied automatically by present-day compilers. To tackle this
problem we present transformations, some of which exploit
domain knowledge. Our intention is to let them be applied
automatically by a domain-specific optimizing compiler. We
are working towards such a compiler in project ExaStencils1,
which is part of the DFG-funded priority research initiative
SPPEXA2.

A serious limiting factor turns out to be the memory band-
width, since the computation of a single result value requires
loading almost as many values from memory as floating-point
operations are performed. We employ different blocking tech-
niques to reduce the bandwidth requirements of our codes.
The evaluation of our optimizations show that architectures
with small, but very fast caches, like modern x86 consumer
CPUs, require a more complex blocking technique than ar-
chitectures with a large, but comparatively slow highest-level
cache, like, e.g., IBM’s BlueGene/Q.

In summary, we make the following contributions:
• a set of six optimizing transformations that can be

applied automatically to stencil codes,
• an experimental evaluation of the optimizations applied

to two codes on three architectures,
• insights into the suitability of the various optimizations

for the individual architectures,
• insights into the basic limitations of stencil code per-

formance.

1http://www.exastencils.org
2http://www.sppexa.de

for (int x = 1; x < dimX-1; ++x)
for (int y = 1; y < dimY-1; ++y)
for (int z = 1; z < dimZ-1; ++z)
out[x][y][z] = a * in[x][y][z]

+ b1 * (in[x][y][z-1] + in[x][y][z+1] + in[x][y-1][z] + in[x][y+1][z] + in[x-1][y][z] + in[x+1][y][z])
- c * rhs[x][y][z];

Figure 3: Kernel code of a 3D 1st-grade Jacobi smoother.

for (int x = 3; x < dimX-3; ++x)
for (int y = 3; y < dimY-3; ++y)
for (int z = 3; z < dimZ-3; ++z)
out[x][y][z] = a * in[x][y][z]

+ b1 * (in[x][y][z-1] + in[x][y][z+1] + in[x][y-1][z] + in[x][y+1][z] + in[x-1][y][z] + in[x+1][y][z])
+ b2 * (in[x][y][z-2] + in[x][y][z+2] + in[x][y-2][z] + in[x][y+2][z] + in[x-2][y][z] + in[x+2][y][z])
+ b3 * (in[x][y][z-3] + in[x][y][z+3] + in[x][y-3][z] + in[x][y+3][z] + in[x-3][y][z] + in[x+3][y][z])
- c * rhs[x][y][z];

Figure 4: Kernel code of a 3D 3rd-grade Jacobi smoother.

2. OPTIMIZATIONS
We choose three basic optimizations, which can be applied

safely to improve the performance of the generated target
code. These optimizations are not domain-specific. They
improve the performance on any architecture and do not
exploit knowledge about stencil codes. In particular, they do
not alter the order of the kernel iterations. They are described
in Subsection 2.1. Subsection 2.2 describes three further,
domain-specific optimizations. They do affect the order of
the kernel iterations and which may reduce the pressure on
the bus from processor to main memory. The effect is that
different architectures favour different optimizations.

2.1 Basic transformations
One of the simplest optimizations is to remove complex

address computations from the innermost loop of the kernel.
Consider the source code in Figure 3. If each array is stored
linearly in memory, a 3D array access in[x][y][z] results
in the polynomial index expression

*(in+(x*dimY+y)*dimZ+z)

For each iteration of the two loops on x and y, the values of
x, y, dimY and dimZ remain constant. Thus,

in_p = in+(x*dimY+y)*dimZ

can be precomputed before entering the innermost loop.
Then, the 3D access in[x][y][z] can be replaced by in_p[z],
which is computed much more easily. This technique of pre-
computing the constant values in the index polynomial for
access of elements of a multidimensional array has been stan-
dard fare in compiler classes for decades [1]. However, it is
not always applied by a compiler, e.g., by gcc, since different
other, previous transformations can stand in the way of this
optimization. We observed that gcc is not able to perform
this transformation after the code was vectorized manually
via vector intrinsics. Consequently, we applied it explicitly
to the innermost loop, which is in every language laid out
contiguously in memory – even in Java. Figure 5 illustrates
this optimization for a single 3D array, regardless of whether
it is linearized in memory or accessed using a 3D pointer
double ***in.

for (int x = 0; x < dimX; ++x)
for (int y = 0; y < dimY; ++y) {
double *in_p = &in[x][y][0];
for (int z = 0; z < dimZ; ++z)
use(in_p[z]);

}

Figure 5: Simplified address calculation for the in-
nermost loop.

Another optimization beneficial for higher-grade stencils
would be to reorder the computations such that an entire
cache line is read at the same time. This prevents a repeated
load of the same data into L1 cache [3]. Consider again
the stencil of Figure 2. Let us assume that the data is
stored in row-major order in memory (as, e.g., in C) and
that the required neighbours in the same row can be loaded
from contiguous addresses, while the elements from the same
column have a higher stride. Consequently, when loading
elements from the same column but from a different row,
each access requires the corresponding cache line to be loaded
into L1 cache, even if only a single double precision value is
copied to a register. Therefore, the cache line could be evicted
before subsequent elements are needed in the next iteration;
unnecessary cache misses result. To prevent them, contiguous
input data for multiple output elements can be stored in
CPU registers at the same time, while the computations are
reordered to process the loaded data early.

This register blocking can also be viewed as a preparatory
step for vectorizing the kernel, our third basic optimization.
Almost all modern processors have SIMD units, which can be
used to perform the same computation in parallel on multiple
data elements. Current x86 processors support the Advanced
Vector Intrinsics (AVX) or, at least, the Streaming SIMD
Extensions (SSE). AVX provides 256-bit registers, which can
be used to store and process eight single-precision or four
double-precision floating-point values in parallel. In contrast,
SSE provides only 128-bit registers, which can also be used for
both single-precision and double-precision values. Another
common architecture in high-performance computing is the
BlueGene/Q. Each of the 16 cores of a BlueGene/Q chip has
a 256-bit vector unit but, in contrast to Intel’s AVX, IBM’s
Quad Processing Extension (QPX) performs all operations

with double precision, which restricts the possible vector
length to 4.

Today, most compilers provide automatic vectorizers but,
in almost every situation, an explicit vectorization can yield
higher performance. The corresponding compiler intrinsics
can be used to declare and work with appropriate vector
types. Not only must one select the suitable intrinsics care-
fully, one must also make sure that all input data is aligned
correctly if the architecture does not support unaligned load
and store operations for vector types, as is the case with
BlueGene/Q. For multidimensional arrays, the programmer
must also choose the width of the innermost dimension care-
fully: if it is not a multiple of the vector length, it must be
padded to ensure that all lines are aligned properly.

2.2 Domain-specific transformations
Domain-specific optimizations of stencil codes modify the

iteration domain of the kernel. Since every data element is
accessed repeatedly during the computation, one simple opti-
mization is to reorder the iterations such that each grid point
is processed completely during one stay in the processor’s
cache. An approach commonly used is to divide the output
grid into axis-aligned blocks and load all input data required
to compute a single block in the highest-level cache. Then,
only data points near the border of the blocks need to be
loaded repeatedly.

Let us call a 2D subset of a 3D grid block a plane. The
simple 3D blocking scheme just described can be improved by
exploiting the fact that, for the 1st-grade kernel, only three
and, for the 3rd-grade kernel, seven neighbouring planes
must reside in cache at the same time. Thus, the outermost
dimension must not be blocked explicitly. Nguyen et al. call
this technique 2.5D blocking [4].

Another possibility to increase the performance is to com-
bine multiple applications of the kernel code. Since the
results of all kernel invocations except the last one are tem-
porary and are not needed after the final result is computed,
it is sufficient to store only few planes in a temporary buffer.
E.g., if two applications of a 1st-grade Jacobi smoother are
being combined, the buffer for the temporary results must be
large enough to hold three planes. In a warm-up phase, the
first two planes of the initial smoother application have to be
computed and stored in the buffer. In the main phase, a third
plane is computed, which is then stored in the next buffer
slot, overwriting the oldest entry. Using all three temporary
planes, one result plane can be computed and stored in the
output grid. This is repeated until the last plane of the input
has been processed.

If the cache is large enough to hold the complete buffer, the
amount of data that must be transferred over the bus from
the processor to main memory can be reduced. For large
grids, even three planes may require too much memory, since
the cache is typically only a few MB wide. But the amount of
data that must reside in cache can be reduced by combining
both blocking techniques described previously. For this so-
called 3.5D blocking [4], the output grid is tiled, using 2.5D
blocking, and the resulting spatial blocks are further blocked
temporally. On the one hand, this reduces the amount of
data to be transferred over the bus significantly, if the buffer
is not evicted accidentally from cache. On the other hand, a
combined temporal and spatial blocking requires a small part
of the temporary grid to be recomputed repeatedly. This
leads to an increase in overhead if the block size is too small

or the number of smoother applications which are combined
is too large. A suitable number N of smoother applications
to be combined for a maximum throughput is given by the
inequality

N ≥
⌈ γ

Γ

⌉
(1)

introduced by Nguyen et al. [4]. γ denotes the bandwidth-to-
compute ratio of the stencil kernel. Analogously, Γ describes
the peak-bandwidth-to-peak-compute ratio of the execution
platform.

Let us consider the 3D 1st-grade smoother code of Figure 3.
An update of a single grid point requires three multiplications,
six additions, one subtraction, eight reads from both input
arrays and one store to the output, resulting in nineteen
operations in total. Since input elements that have been
loaded previously can be reused, only two elements must be
fetched from main memory, one from in and one rhs, which
results in transferring sixteen bytes for double precision.
Analogously, a single value is written back to main memory,
which results in another eight bytes to be transferred. In
general the hardware has to load a cache line from main
memory before it can be modified, so the old value of the
output array has to be fetched from main memory, too. This
so-called write-allocate increases the pressure to the bus
and in total, this makes a bandwidth-to-compute ratio of
γ = 32 bytes / 19 op.

Another, similar technique, which does not require the
recomputation of values, is called time skewing [7]. But, the
combination temporal and spatial blocking without a need
to recompute values requires either additional memory or
more complex address calcuations. Time skewing comes with
different blocking techniques, which may result in differently
sized trapezoidal blocks [5]. In contrast, the 3.5D blocking
scheme described previously generates always equally sized
blocks.

3. PERFORMANCE ANALYSIS
We have tested our optimizations on three different sys-

tems. Two are consumer x86 machines, while the third is
a BlueGene/Q architecture. The first test environment has
an Intel Ivy Bridge quadcore processor, which is clocked at
3.1 GHz when all four cores are running, a 6 MB L3 cache
and 16 GB of DDR3-1600 main memory. The second system
has an AMD Thuban hexacore processor, clocked at 2.7 GHz,
also a 6 MB L3 cache, but only 8 GB of DDR2-800 memory.
In contrast to these two consumer chips, our third test sys-
tem consists of several 16-core BlueGene/Q processors, of
which we use only one since we are interested in node-level
performance. The deepest cache of this architecture is the
L2 cache, which is 32 MB wide. Each processor also contains
two built-in memory controllers with 8 GB of DDR3-1333
main memory.

Both Intel Ivy Bridge and AMD Thuban benefit from quite
efficient out-of-order execution units. That is, the processor
is able to reorder the instruction stream decoded from the bi-
nary for best use of the available execution units. In contrast,
BlueGene/Q executes all threads in-order but, compensating
for this limitation, a single physical processor core can exe-
cute up to four threads in parallel in hardware. Thus, if a
single thread is not able to load the processor core to capacity,
parallel threads can take up the slack. For this reason, we
also measured the performance of 32 threads running on a

Platform Peak BW Peak Gop/s Byte/op

Ivy Bridge 22 49 0.45
Thuban 13 31 0.42

BlueGene/Q 38 102 0.37

Table 1: Peak bandwidth (GB/s), peak double-
precision compute performance (Gop/s) and
bandwidth-to-compute ratio (B/op) of the three
platforms.

single 16 core chip. Some of Intel’s Ivy Bridge processors are
also able to execute two threads concurrently in hardware.
But, as all threads execute the same, small kernel code and
there are no other code blocks, which might make use of dif-
ferent parts of the processor, the aforementioned out-of-order
execution unit is sufficient to achive best performance. Be-
cause of the additional overhead, a management of multiple
threads would actually decrease performance. Consequently,
we disabled this so-called hyper-threading technology of Ivy
Bridge.

Both x86 processors can perform a floating-point addition
and an independent multiplication in parallel; BlueGene/Q
has instead a fused multiply-add instruction. But most
stencil codes contain far fewer multiplications than additions
and cannot exploit these special instructions. Thus, the peak
compute performance of stencil codes can reach at most one
half of the theoretical peak compute performance of these
architectures. We measured both peak bandwidth and peak
stencil compute performance using micro benchmarks and
their results are shown in Table 1. The peak bandwidth
is measured in GB/s and the peak compute performance
in Gop/s. A single operation op is either a floating point
operation or a load/store instruction.

On the x86 architectures, we used gcc 4.7 to generate
the executables. We ascertained that the Intel compiler
icc 13 did not generate faster binaries for our test codes. On
the BlueGene/Q, we used bgxlC, IBM’s XL C++ compiler
version 12, which is optimized for this architecture. Because
of a compiler bug in the compiler’s C frontend, we had to
use the C++ compiler, even though our test code is written
in standard C99.

3.1 3D 1st-grade smoother
The first kernel we have examined is a 3D 1st-grade Jacobi

smoother. Figure 6 illustrates the benefits of our transforma-
tions an all three test platforms. As a baseline, we measured
a naive implementation of this kernel, which is basically
the same code as shown in Figure 3, except that it was
parallelized using the following OpenMP pragma:

#pragma omp parallel for collapse(3) schedule(static)

which directs the compiler to distribute the iterations of the
three-fold loop nest equally across all threads.

Experiment basic opt. includes all optimizations described
in Section 2.1, whereas temp. blocking measured a purely
temporal blocking and 3.5D blocking refers to the combined
temporal and spatial blocking described in Section 2.2. An
purely spatial blocking experiment is not included, since it
yields no improvement over the basic opt. experiment.

Our basic transformations enable the compiler to generate
quite efficient code which saturates the available memory
bandwidth of all test systems while using at most half of the

physical processor cores. In contrast, the naive implementa-
tion is compute-bound on all architectures. This means that
it does not use the full memory bandwidth; thus, it benefits
from using additional available cores. In our experiments,
every core added increased the performance.

For the 3.5D blocking technique, we determined the value
of N in Inequality 1 as 5 for AMD Thuban and IBM Blue-
Gene/Q and 4 for Intel Ivy Bridge. Consequently, we chose
to implement a version that merges five Jacobi iterations.
Figures 6(a) and 6(b) show a linear speedup for both x86
architectures and a resulting performance much higher than
the memory bandwidth-bound basic opt. version. This tech-
nique transforms the bandwidth-bound to a compute-bound
kernel. The same holds for the IBM BlueGene/Q processor
when using all 16 physical cores, as shown in Figure 6(c),
but the difference to the basic opt. version is not as high as
for the consumer processors.

The purely temporal blocking experiment showed the most
surprising behaviour. On the two x86 architectures, there is
no improvement at all, even though we combined only two
smoother applications, rather than five, in order to save on
temporary buffer space needed to hold the data handed from
one smoother call to the next. The reason is that the amount
of memory required for three planes of the 5123 elements
large input does not fit into the cache of either x86 processor.
Therefore, a simple temporal blocking shows no improvement.
On the other hand, BlueGene/Q’s cache is large enough to
hold all temporary buffers as well as larger parts of the input:
even for three smoother applications combined, this code
performs very well as shown in Figure 6(c). Combining five
smoother applications, as in case of the 3.5D blocking version,
requires temporary buffers to be large enough to store four
intermediate results but, in order to reduce the danger that
parts of the buffer are evicted from cache, an additional
spatial blocking is required. This leads to smaller blocks of
data processed consecutively, which results in an increase
of the number of blocks – or, rather, the number of times
that computation starts with a cold L1 cache. Due to the
comparatively high latency of BlueGene/Q’s L2 cache, the
purely temporal blocking scheme outperforms 3.5D blocking.
In contrast to the temp. blocking scheme, the latter also
requires the recomputation of temporary results at the border
of each block, which causes additional overhead.

3.2 3D 3rd-grade smoother
The benefits of our optimizations of the 3rd-grade smoother

are depicted in Figure 7. Again, we started with a naive
baseline implementation as shown in Figure 4, parallelized
the same way as described in the previous subsection. The
implementation is just as inefficient, which renders this code
compute bound on the tested platforms. After applying all
basic transformations, the code becomes memory-bound but,
in contrast to the 1st-grade smoother, the 3rd-grade basic opt.
version is more compute-intensive: it requires more processor
cores to load the memory bandwidth to capacity.

Combining temporal and spatial blocking to the 3.5D
blocking version first requires to calculate the bandwidth-
to-compute ratio γ of the 3rd-grade smoother in order to
determine the value of N in Inequality 1. Consider again the
code in Figure 4. Updating a single grid element requires
24 floating-point operations and 21 memory instructions;
thus, a total of 45 operations are needed whereas, in the best
case, only 32 bytes have to be transferred over the bus. With

●

●

●
●

Threads

S
pe

ed
up

1 2 3 4

2

4

6

8

10
● naive

basic opt.
temp. blocking
3.5D blocking

(a) Intel Ivy Bridge

●

●

●
●

● ●

Threads

S
pe

ed
up

1 2 3 4 5 6

2

4

6

8

10

12 ● naive
basic opt.
temp. blocking
3.5D blocking

(b) AMD Thuban

● ● ● ● ● ●
●

Threads

S
pe

ed
up

1 4 8 12 16 32

0

50

100

150

● naive
basic opt.
temp. blocking
3.5D blocking

(c) IBM BlueGene/Q

Figure 6: Performance results for the 1st-grade smoother on three platforms.

●

●

●

●

Threads

S
pe

ed
up

1 2 3 4

2

4

6

8

10 ● naive
basic opt.
temp. blocking
3.5D blocking

(a) Intel Ivy Bridge

●

●

●
●

●
●

Threads

S
pe

ed
up

1 2 3 4 5 6

2

4

6

8

10

12

14
● naive

basic opt.
temp. blocking
3.5D blocking

(b) AMD Thuban

● ● ●
●

●
●

●

Threads

S
pe

ed
up

1 4 8 12 16 32

0

20

40

60

80

100
● naive

basic opt.
temp. blocking
3.5D blocking

(c) IBM BlueGene/Q

Figure 7: Performance results for the 3rd-grade smoother on three platforms.

a bandwidth-to-compute ratio of γ = 32 bytes / 45 op =
0.71 bytes/op and

N ≥
⌈ γ

Γ

⌉
= 2 (2)

for all platforms, we combined two smoother applications in
the 3.5D blocking technique.

As in case of the 1st-grade smoother, the combination of
temporal and spatial blocking is essential for x86 processors
to maximize the throughput of the code. Figures 7(a) and
7(b) show a speedup of more than factor two compared to
the basic opt. version.

A purely temporal blocking approach requires even larger
temporary buffers than for the 1st-grade kernel, since more
neighbouring planes have to be stored for the computation
of a single output plane. Consequently, on both the Intel Ivy
Bridge and the AMD Thuban, the temp. blocking scheme
shows no benefit over the basic opt. scheme: both are memory
bound. On the IBM BlueGene/Q, a simple temporal block-
ing leads to a faster code because the cache is large enough to
store the entire buffer. But, when using all 16 cores, the 3.5D
blocking version performs better, even though both versions
combine two smoother applications. That is, theoretically,
the cache is large enough but, practically, cache lines corre-
sponding to the buffer are accidentally evicted from the L2
cache and have to be reloaded for the next access.

4. CONCLUSIONS
We have conducted a small study of domain-specific pro-

gram transformations to bring Jacobi smoother stencil codes
to highest performance. In summary, we have learned the
following.

Memory bandwidth can be a serious performance brake.
In order not to let it take hold, the optimization of the codes

has to be customized for the execution platform. We have
studied platforms of two types:

• x86 architectures have comparatively small highest-
level caches with a low latency. This requires the
fragmentation of the data into comparatively small
blocks. The best partitioning scheme is 3.5D blocking.
The AVX/SSE instructions for unaligned loads and
stores are an additional help. However, for highest
performance, vectorization has to be specified explicitly.

• BlueGene/Q is a comparatively simple architecture
aimed at high processor numbers. This is reflected in
the fact that performance on a single processor is poor
and additional processors result in a comparatively
high speedup. The highest-level cache is larger and has
higher latency. This makes a purely temporal blocking
scheme most suitable.

In our experiments, execution speed on the three architec-
tures differed by at most a factor of 2, with Ivy Bridge being
the fastest. Also, it must be said that theoretical peak per-
formance is not within reach because of the low arithmetic
intensity of stencil codes.

5. ACKNOWLEDGEMENTS
This work is part of project ExaStencils in the DFG priority

programme SPPEXA, grant no. LE 912/15-1.

6. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers – Principles, Techniques and Tools.
Addison-Wesley, 2nd edition, 2007. Section 6.4.3.

[2] M. Bolten. Multigrid Methods for Structured Grids and
their Application in Particle Simulation. PhD thesis,
Bergische Universität Wuppertal, 2008.

[3] H. Dursun, K. Nomura, W. Wang, M. Kunaseth,
L. Peng, R. Seymour, R. K. Kalia, A. Nakano, and
P. Vashishta. In-core optimization of high-order stencil
computations. In Proc. Int. Conf. on Parallel and
Distributed Processing Techniques and Applications
(PDPTA), pages 533–538. CSREA Press, 2009.

[4] A. D. Nguyen, N. Satish, J. Chhugani, C. Kim, and
P. Dubey. 3.5-D blocking optimization for stencil
computations on modern CPUs and GPUs. In Conf. on
High Performance Computing Networking, Storage and
Analysis (SC), pages 1–13. IEEE, 2010.

[5] R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel.
Cache oblivious parallelograms in iterative stencil
computations. In Proc. 24th Int. Conf. on
Supercomputing (ICS), pages 49–59. ACM, 2010.

[6] U. Trottenberg, C. W. Osterlee, and A. Schuller.
Multigrid. Academic Press, 2000.

[7] D. Wonnacott. Using time skewing to eliminate idle time
due to memory bandwidth and network limitations. In
Proc. 14th Int. Parallel & Distributed Processing Symp.
(IPDPS), pages 171–180. IEEE Computer Society, 2000.

