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ABSTRACT
Multigrid methods are fast and scalable numerical solvers for partial
differential equations (PDEs) that possess a large design space for
implementing their algorithmic components. Code generation ap-
proaches allow formulating multigrid methods on a higher level of
abstraction that can then be used to define a problem- and hardware-
specific solution. Since these problems have considerable implemen-
tation variability, it is crucial to define a general mapping of core
components in multigrid methods to the target software. With SYCL
there exists a high-level C++ abstraction layer that is capable of tar-
geting a multitude of possible architectures. We contribute a general
way tomapmultigrid components to SYCL functionality and provide
a performance evaluation for specific algorithmic components.

CCS CONCEPTS
• Computing methodologies → Multiscale systems; • Software
and its engineering→ Parallel programming languages.
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1 INTRODUCTION
Solving PDEs is a crucial task in engineering and the natural sci-
ences. Often, an analytical solution to the PDE is not possible or
feasible. As a consequence, the transformation of the PDE into a
discretized systems of equations and numerical solution is done, to
which multigrid methods provide a fast and scalable approach.

Multigrid methods possess a large design space regarding their
algorithimic components. One solution to remedy this is code gen-
eration, which allows users to specify an algorithm in an abstract
notation, and have a tool to create a problem-specific and platform-
specific implementation automatically. For this purpose, ExaStencils
[1] provides a multi-layer domain-specific language that is capable
of generating C++ code from increasingly more abstract problem
definitions. When looking at the implementation, the design space
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magnifies: Code may be executed on CPUs, but other platforms
with different vector extension instruction sets exist. Depending
on the vendor, libraries to program their respective devices include
CUDA, OpenCL, or ROCm. This makes code portability a significant
challenge in the engineering of numerical software, since they are
often executed on large computing clusters that employ embedded
systems to reduce energy consumption [2]. Ensuring that source
code is executable on each possible architecture requires additional
abstraction compared to standard parallel programming libraries.

A solution for this is SYCL, which is a C++ abstraction layer
for writing parallel programs on heterogeneous architectures. It
allows the implementation of code for device and host code in
a single-source multiple compiler-passes (SMCP) design. Single-
source means that the kernel code can be written in the same file as
the host code which allows using most of the C++ standard as well
as compiler features such as type checking or other static analysis.
With this approach, source code containing kernels is compiled once
for the device and once for the host, thus generating the appropriate
communication and algorithm logic for the target architecture [3].
A SYCL application consists of explicitly parallel command groups,
which combine a set of necessary data accessors with a kernel, and
a program running on the host device. The kernel is associated with
an iteration space, and its body is executed in parallel for each point
in this range on the device. Depending on the necessary data ac-
cessors, the SYCL runtime may schedule the execution of kernels
in parallel depending on their overlapping accessors. This way, a
task-graph is built during program execution that ensures correct
execution order between kernels.

SYCL provides an interface for programming devices without
explicit need to use an architecture-specific API. A wide range of
platforms can already be targeted by the SYCL back ends currently in
development. Codeplay’s ComputeCpp is an implementation of the
SYCL standard that supports CPUs andOpenCL devices and provides
experimental functionality for Nvidia GPUs and SPIR-V devices.
TriSYCL provides an implementation of the SYCL standard, which
allows parallelizing code with OpenMP and additionally targets
FPGAs by Xilinx.

The contributions of this paper are:
• A general approach to realize the recursive, non-linear multigrid
formulation for different schedules as a SYCL application.

• An evaluation of two compute-intensive components of a stan-
dard multigrid application with the triSYCL1 and ComputeCpp2
SYCL back end compared to a CPU-only implementation.
Next, we introduce the basics of Multigrid methods in Section 2

followed by a mapping strategy to SYCL components in Section 3,
an evaluation in Section 4 and related works as well as a conclusion
in Section 5.

1https://github.com/triSYCL/triSYCL
2https://www.codeplay.com/products/computesuite/computecpp

This is the author’s version of the work. The definitive work was published in
Proceedings of the 22nd International Workshop on Software and Compilers for Embedded Systems (SCOPES), Sankt Goar, Germany, May 27, 2019.
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2 ALGORITHMIC COMPONENTS OF
MULTIGRID METHODS

This section introduces the general algorithmic components of the
recursive, non-linear multigrid formulation. For an in-depth explana-
tion, the respective literature is recommended [4]. We implemented
the general principles described here in the ExaStencils code gen-
erator [1] to produce C++ code that parallelizes the application of
stencils with SYCL. The essential idea of multigrid methods is based
on two principles [4]:
(1) Standard iterative solvers can reduce the high-frequency compo-

nent of an error term in a few iteration steps significantly. This
behavior is called the smoothing property.

(2) It is possible to sufficiently approximate a discretized problem
with fewer discretization points as long as its error term is smooth.
Furthermore, by restricting the problem to fewer discretization
points, it is possible to transform the low-frequency components
of an error term to high-frequency components to efficiently
apply the smoother again.
These principles combine to an iterative algorithm that recur-

sively traverses a hierarchy of D-dimensional grids Gk that exist
within the computational domain Ω ⊂ RD . These gridsGk , 1 ≤ k ≤
K possess an increasing amount of discretization points compared
to their predecessors. For example, Gk+1 doubles its amount of dis-
cretization points in each dimension compared toGk if the standard
coarsening strategy is employed. Let the problem onGk be denoted

Lk · uk (x) = fk (x)
The solutionu(x), the right-hand side f (x), and the residual r (x) are
functions that depend on the grid positions x ∈ Ω. We denote them
as u, f and r from this point on to not obfuscate the algorithm.

Algorithm 1 shows a recursive formulation of one multigrid cy-
cle. Note that multigrid methods are very flexible regarding their
particular composition and thus, each step depicted in the algo-
rithm has multiple alternative implementations. On the coarsest
grid k = 1, the problem is either solved directly by algorithms such
as the conjugate gradient method, GMRES, LU factorization, or by
many smoothing operations. A suitable smoothing method S(u, L,
f , i) applies pre- and post-smoothing. It improves the initial guessu
and does so in i iterations. General examples include the (red-black)
Gauss-Seidel or Jacobi methods, and many other problem-specific
smoothers exist. Then, a new residual approximation rk is calcu-
lated and restricted with an interpolation operation R : rk → rk−1.
Again, we may consider different approaches, such as considering
only direct neighboring values or also considering diagonal relation-
ships. The resulting vector with fewer discretization points is used
to approximate the solution on a coarser grid. This procedure is then
recursively executed. The coarser solutions vk−1 are prolongated
with the help of an additional interpolation method P : vk−1 → vk
and used to correct the residual on the finer grids to return to the
original amount of discretization points.

Depending on γ , the algorithm results in different schedules,
which have better convergence rates depending on the problem.
Selecting γ = 1 yields a so-called V-cycle, which traverses each grid
size twice, while other options include the W-cycle by setting γ = 2.
They both are depicted in Figure 1, but we may also modify the cycle
further, for example, start at the coarsest grid.

function MG( uk , Lk , fk , γ , i1, i2):
if k = 1 then

solve Lk · uk = fk // coarsest grid

else
ūk = S(uk , Lk , fk , i1) // pre-smoothing

rk = f k − Lk · ūk // calculate residual

rk−1 = R · rk // restriction

for 1 to γ do
// recursion

uk−1 = MG( vk−1, Lk−1, rk−1, γ , i1, i2)
end
vk = P · vk−1 // prolongation

ũk = ūk + vk // correction

uk = S(ũk , Lk , fk , i2) // post-smoothing

end
return uk

end

Algorithm 1: Recursive formulation of a multigrid cycle.
Executing this on the finest level l in the j-th iteration
results in a better solution for the original problem u(j+1)

l .
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Figure 1: The V-Cycle and W-Cycle for two grid layers and
their respective timesteps.
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Figure 2: The five-point approximation of Poisson’s equa-
tion and a graphical representation of a stencil in a 2D
equidistant grid. The blue central node’s value is computed
from the values of its orange neighbors.

The restriction, prolongation, pre- and post-smoothing opera-
tors in the multigrid formulation can be realized through stencil
computations, which are the primary target for parallelization. Sten-
cils are usually defined on regular grids, i.e., equidistantly placed
values in a fixed space, and describe update rules of a center node
depending on a local arrangement. For example, Figure 2 depicts
the two-dimensional discrete Poisson’s equation with eliminated
Dirichlet boundary, a classical model problem, where hk = 1

Nk
and

Nk ∈ N is the total number of grid points on layer k , as well as a
graphical despcription of a stencil computation.
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The residual r = f − L · ū is a measure of how much an approxi-
mation ū fulfills the original problem L ·u = f . It is normed to define
a criterion for convergence of the multigrid algorithm because the
error function e = ū − u is not available. The multigrid cycle MG
described in Algorithm 1 is executed until the normed residual ∥r ∥
is small enough.

3 REALIZING MULTIGRID WITH SYCL
To evaluate SYCL in a multigrid context, a general mapping strategy
for multigrid components to SYCL functionality is introduced in this
section. While the formalisms presented in Section 2 are explained
in a general way, adapting multigrid methods to difficult problems
does not change these components but instead uses them to express
more complex mathematical concepts.

Aside from targeting a multitude of architectures, one of SYCL’s
main advantage is its task graph model expressed through accessors
to buffers in a specific kernel. This task graph abstracts data flow
and removes the need to place inter-kernel synchronization points
within an application explicitly. Each stencil operation over the
entire grid is realized as a one-dimensional command group where
the grid size of the respective multigrid layer defines its iteration
domain. Since stencil codes are regular for each considered point
in the grid and do not change for a specific operation during the
multigrid algorithm, we can take advantage of the code generation
approach and directly resolve the concrete neighborhood weighting
given by the stencil in the kernel.

However, mapping the stencil codes for smoothing still requires
two kernels. While Jacobi smoothers theoretically expose full paral-
lelism, handling each point in the grid simultaneously, they still have
to be implemented in a way such that no intra-kernel data race ex-
ists. Here, SYCL allows for a higher level of abstraction than normal
OpenCL barrier synchronization: So-called parallel-for-work-groups
allow defining more than one kernel in the same command group
and implicitly ensure that all points in a kernels’ iteration domain fin-
ish before the next kernel starts. We model Jacobi smoothers as such
a parallel-for-work-group and separate all read from write accesses.
This approach simplifies the synchronization process compared to
barrier synchronization or a double buffering scheme.

Gauss-Seidel iterations may employ coloring schemes that ex-
ecute smoothing on subsets of grid points in a specific order. For
example, red-black coloring handles all points with even indices
first and the rest afterward. These coloring schemes are handled
by executing the same smoothing operation twice with different
indexing checks, thus also requiring two kernels.

Furthermore, enforcing boundary conditions (BCs) requires two
additional kernels per dimension to calculate the corresponding
values in the boundary regions.

These considerations imply that it is necessary to implement a
parallel kernel for restriction, prolongation, correction as well as
two kernels for smoothing and 2 · D kernels per grid function for
each multigrid layer, leading to a total of

(K − 1)(4 + 6 · D) (1)
necessary kernels to implement for this general multigrid formula-
tion. This formula shows the advantage of employing a code gen-
eration approach paired with SYCL compared to standard parallel
programming:

(1) Through code generation, it becomes unnecessary to implement
a large number of kernels manually.

(2) SYCL implicitly handles data synchronization, which becomes
infeasible to do during generation time with increasingly complex
multigrid methods.

To reduce the total amount of buffer allocations necessary, we
decided to declare each buffer at a globally accessible namespace
and allocate them in an initialization function before the actual
multigrid algorithm. The functions r , f and u require a buffer per
multigrid layer. Note that the prolongation and correction can be
combined to one kernel, therefore saving a buffer for v , since vk−1
is the same as uk−1. The functions themselves are realized as one-
dimensional SYCL buffers and their grid values are ordered row-
major. For example, in a square two-dimensional grid of size H2, an
entry at position (x,y) is located at buffer entry x + H · y.

The space allocated inside a buffer does not only depend on the
total amount of grid points, but depending on the applied BCs it
might be necessary to also designate space for so-called ghost points
in the respective buffer. Depending on the maximum stencil size
used inside the multigrid algorithm each grid is extended such that
it is not possible to access out-of-bounds coordinates by applying a
stencil. This approach is preferable to defining boundary treatments
inside the kernels because it would lead to branch divergence in a
parallel dispatch, which is undesired in GPU programming [5].

Calculating the normed residual entails the generation of a re-
duction procedure that extracts a singular value from a buffer. We
introduce global buffers that are reused for each reduction to reduce
the amount of total data allocations necessary. They temporarily
store mappings before the actual reduction. For example, it is nec-
essary to calculate the square of each entry of r for the L2-norm.
The reduction itself is in-place and employs standard optimization
techniques that can be found in [6].

4 EVALUATION
The execution times (ETs) reported in this section were measured
on an Intel Xeon CPU and an Nvidia Tesla K20c GPU. We compare
Codeplay’s ComputeCpp targeting the GPU, triSYCL’s OpenMP
parallelization on the CPU, and a sequential implementation.

Smoothing is the most time-consuming part of a typical multigrid
application. Figure 3 shows the speedup of using ComputeCpp and
triSYCL compared to a sequential implementation of a red-black
Gauss-Seidel smoother generated by the ExaStencils code generator
[1]. While triSYCL and ComputeCpp do not provide a significant
speedup for buffer sizes 105 and 106, the potential for SYCL paral-
lelization is shown by the increasing speedup for the largest buffer
size when using ComputeCpp. Note that using SYCL is slower than
the sequential implementation for buffer sizes smaller than 105. This
performance impact means that it becomes crucial to determine
which multigrid layers one should parallelize with the current SYCL
implementations.

We also found that calculating the normed residual and reporting
it back to the host is another performance-critical component in
our generated code, especially when considering that this calcula-
tion is a relatively small part of a standard multigrid algorithm.
Figure 4 shows a comparison of execution times for the imple-
mented reduction targeting the GPU with ComputeCPP compared
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Figure 3: The speedup provided by employing SYCL for red-
black Gauss-Seidel smoothing for buffer sizes 105 to 107.
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Figure 4: ETs for std::acummulate on the CPU compared to
a reduction on the GPU with ComputeCpp for buffer sizes
105 to 107.

to an std::accumulate call on the CPU. The latter is split into
the amount of time spent between kernel submission and start of
execution, time spent within the kernel, and amount of time spent
until the result is reported back to the host. This relation indicates
that communication overhead takes up a significant amount of time
while the actual kernel execution is almost negligible. It is worth
noting that the reduction using triSYCL is not listed in this figure
because the resulting ETs are 0.4, 4.5 and 44.7 seconds for buffer
sizes 105 to 107, respectively.

A reason for these ETs is the fact that the implementation of
parallel-for-work-groups in the triSYCL back end is slow. Addition-
ally, a standard reduction implementation decreases the amount of
considered buffer entries by a factor of 2 ·W in one step, where
W is the maximum number of work-items. SinceW is significantly
smaller for CPUs compared to GPUs, this also impacts performance.
Other reduction strategies might be necessary for embedded devices
that possess a different programming model. Although the SYCL
parallel STL3 provides a reduce function, an optimal implementa-
tion heavily depends on the target architecture, which raises the
question why there is no built-in structure in the SYCL specification
for such a standard technique.

5 RELATEDWORKS AND CONCLUSION
Trigkas [7] evaluated a prototypical implementation of the SYCL
standard called Syclone. They ported six applications from three
different benchmarks to SYCL, OpenCL, and OpenMP to compare

3https://github.com/KhronosGroup/SyclParallelSTL

execution times. Of particular interest to this paper are their results
of the “27stencil” application from the EPCC OpenACC benchmark
suite4, which applies a 27-point stencil in a 3D neighborhood for
fields of size 106 to 107. They measured execution times on an Intel
Xeon and Intel Xeon Phi and found that SYCL requires 211 seconds to
run on the most extensive dataset while a sequential execution only
takes 61 seconds. They further suspect that these poor execution
times are tied to data transfers because the SYCL runtime handles
them instead of the programmer.

Silva et al. [8] also evaluated the “27stencil” benchmark to eval-
uate the performance of triSYCL compared to an OpenMP and
OpenCL implementation. They found that their OpenCL implemen-
tation is 2.35 times faster and the OpenMP implementation 2.22
times faster than their SYCL implementation. They also state that
the triSYCL implementation is competitive with OpenCL in terms
of ETs, while requiring significantly fewer lines of code.

The SYCL standard itself provides a straight-forward approach to
implement algorithms that can target a variety of heterogeneous ar-
chitectures that exposes a high degree of parallelism without having
to state synchronization points in the resulting program explicitly.
Therefore, SYCL is well suited for code generation when back end
performance improves further.
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